
Fortune’s Voronoi Diagram algorithm and an
application in MRI reconstruction.

Themistoklis Haris

Abstract

In this report, the fundamentals of Voronoi diagrams are presented and an elegant and
efficient sweep-line algorithm for their construction is described and analyzed (For-
tune’s algorithm). Specifically, the usage of the required data structures (priority
queues and balanced binary search trees) is justified, detailed pseudo-code is given and
the most important scenarios of the algorithm are graphically illustrated. Then, an
application of Voronoi diagrams to the problem of Magnetic Resonance Image (MRI)
reconstruction is sketched. Preliminary results on synthetic images are shown.

1 Introduction

The way space is partitioned around a fixed set of points has always been a field of scientific
interest. Nature itself arranges molecular structures in a way that the least possible amount
of energy is required to achieve stability. When it comes to biology, the main and most
fundamental autonomous entity that can sustain life, the cell, organizes itself so that the
operations and chemical reactions it needs to survive happen fast and efficiently. In addition,
space partitioning around points of interest has many more applications in science. It can
be used in Astronomy, Geology, Forestry, Robotics, Manufacture and Computer Graphics
to mention a few. In this report, we present and analyzed a very special partitioning of
space, the so called Voronoi diagram. Although there is a huge number of algorithms for the
construction of Voronoi Diagrams, the algorithm we present here is a sweep line algorithm
proposed by Fortune in 1986 [4] and still remains one of the fastest and simplest ones.

Figure 1: A Voronoi Diagram

The rest of the report is organized as
follows. In Section 2, we introduce and an-
alyze the topic geometrically, from a math-
ematician’s point of view, and in Section 3,
we present Fortune’s algorithm that success-
fully produces the partitioning of a plane
(the Voronoi Diagram), based on specific
input points. In Section 4, we present an
application of Voronoi diagrams to a prob-
lem of medical imaging, namely, the problem
of Magnetic Resonance Image (MRI) recon-
struction. The problem is briefly introduced and a simple use of Voronoi diagrams to achieve

1

generic sampling independent reconstructions is described. Preliminary results on 3D syn-
thetic images are shown. Finally, in Section 5, we conclude our findings and take a broader
look at the subject of Voronoi Diagrams and MRI reconstruction.

2 Voronoi diagrams: basic properties

A formal definition Let P be a set of n ≥ 2 points in a plane. The points in P are
referred to as sites. The Voronoi diagram of P is a partitioning of the plane into n cells, one
for each point. The cell corresponding to point pi ∈ P is denoted as V (pi). The fundamental
property of this partitioning is that every point q ∈ V (pi) is closer to pi than it is to any
other site.

More formally, we define a relation V : R2 → P so that dist(x, s) ≤ minz∈P (dist(x, z))⇔
x ∈ V (s), ∀x ∈ R2. We can easily infer that some points belong to two or more Voronoi
cells, being equidistant from two or more sites. The collection of these points is what we call
the Voronoi Diagram. An example is shown in Fig. 1.

In the following, an analysis of the geometrical structure of a Voronoi diagram is pre-
sented, and some basic observations are reported.

Observation 2.1 Every Voronoi cell is a closed, convex and possibly unbounded polygonal
chain, whose sides are parts of the perpendicular bisectors of the segments connecting the
sites (see Fig. 2). Thus, each Voronoi cell has at most n− 1 vertices and edges.

Observation 2.2 The Voronoi diagram is a connected planar embedding. The sides of each
Voronoi cell are either half-lines or line segments. They cannot be full lines, except the case
where all points are collinear. In that degenerate case, the diagram consists of n− 1 parallel
lines (See Fig. 3).

Figure 2: The perpendicular bisector
of the segment p1p2 divides the plane
in two. q is closer to p1 than to p2.

Figure 3: Degenerate case of Voronoi
diagram with all points collinear

Theorem 2.1 As a planar embedding, the complexity of the Voronoi diagram is linear.
More specifically, for n ≥ 3, a Voronoi diagram can have at most 2n − 5 nodes and 3n − 6
edges. Therefore, on average, each Voronoi cell has less that six sides.

2

Proof: The statement follows immediately from Euler’s formula for connected embedded
planar graphs, which states for the number of nodes mn, the number of faces mf and the
number of sides me that: mn − me + mf = 2 (See Fig. 4). Of course, our graph has
some infinite edges, so the formula cannot be applied the way it is. We have to create
a dummy vertex v∞, to which every infinite edge will be incident to. Then, we get that
(mn+1)−(me)+n = 2. At the same time, we also know that every edge is incident to exactly
two vertices and every vertex has a degree of at least 3, so the relation 2me ≥ 3(mn + 1)
holds. From that, we arrive at the desired conclusion �

Figure 4: In this planar graph, mn = 6, me = 11 and mf = 7, so Euler’s formula holds

Observation 2.3 Since we have a quadratic amount of perpendicular bisectors and only
linear complexity, not all bisectors contribute to the sides of the Voronoi diagram. For a
bisector to be part of a side between cells V (pi) and V (pj), it must contain at least one point
whose largest empty circle in respect to set P passes through only pi and pj (See Fig. 5)
Also, a point q is a vertex of the Voronoi diagram if and only if its largest empty circle in
respect to P contains three or more sites on its boundary.

3 Constructing the Voronoi diagram

Many algorithms have been proposed to compute the Voronoi diagram of a set of points
P . First of all, one could simply examine all possible perpendicular bisectors defined by
the points in P in O(n2). That is a complete search algorithm, which runs in quadratic
time and is sufficient if execution time limits are not very demanding. However, construct-
ing the Voronoi diagram can be done faster in O(n log2 n). The first algorithm to achieve
this complexity was proposed by Shamos and Hoey in 1975 [6] and uses the divide and
conquer paradigm. However, this idea uses very complex data structures, contains many
non-automatic steps and is very difficult to implement. A simpler algorithm for Voronoi
diagrams was proposed by Steven Fortune in 1986 [4, 1]. This algorithm is analyzed below.

3

Figure 5: J is a point in a side, so circle c only passes through sites A and D. Point K is
a vertex, so circle d passes through sites I,F and G. Even though line f is a perpendicular
bisector of segment AG, it is not part of the Voronoi diagram.

3.1 Prerequisites

In order to understand Fortune’s algorithm, the reader must be familiar with the following
mathematical and computational ideas and concepts:

Parabolic curves

A parabola is the locus of the points in the plane that are equidistant from a point F (called
the focus) and a line l(called the directrix) (Fig. 6). If p = dist(F, l), (a, b) is the vertex
of the parabola and the equation of the directrix is y = k ∈ R, then the equation of the
parabola in the plane is: y = 1

2p
(x− a)2 + b.

Figure 6: |FK| = p, V = (a, b), l : y = k ∈ R⇔ c : y = 11
2p
(x− a)2 + b

4

Binary Search Trees and Red Black Trees

Binary search trees are binary trees that satisfy the binary-search-tree property: If x is
a node in the tree and y an node in the left subtree of x, then y.key ≤ x.key. If y is a node
in the right subtree of x, the y.key ≥ x.key. The order relations ≤ or ≥ are of our choosing.
This simple property allows us to search for, insert or delete elements in the tree in O(h)
time, where h is the height of the tree, using very simple algorithms, like inorder tree walks.
For the implementation, we use pointers from parent nodes to child nodes. If a child node
is missing the pointer is NIL.

Sometimes however, binary search trees receive values in such a way that the height
becomes very large and the complexity of insertion or deletion queries becomes linear and
the binary search tree becomes practically a linked list data structure [2]. To avoid that
and to keep the complexity of quering binary search trees logarithmic, we introduce a notion
called “balancing”, i.e. restructuring the tree to facilitate some operations. There are many
versions of balanced BSTs, but we will be using Red-Black Trees in our implementation of
Fortune’s algorithm.

Red-Black Trees give a “color” attribute to each node and use that to perform balancing
operations called “rotations” [2]. We will not analyze in depth these rotations, but we will
be using them to maintain balance in our trees.

Figure 7: A Binary Search Tree and a Red-Black Tree. Notice the BST property which holds
in both trees

Doubly-Connected Edge Lists

The Doubly-Connected Edge List (DCEL) is a data structure that efficiently stores informa-
tion about a planar subdivision induced by a planar embedding of a graph. In the general
case, a DCEL is a complex data structure that stores a lot of information. In our case how-
ever, since the Voronoi planar graph is connected, the DCEL will consist only of two records,
which will be implemented as arrays that store pointers. The first record will contain infor-
mation about the vertices of the Voronoi diagram and the second one will store information
about the edges of the Voronoi diagram in the form of a doubly-linked list. Please refer to
8 for more clarifications.

5

Vertex Coordinates Incident Edge
v1 (1, 5) e⃗1,2
v2 (4, 4) e⃗3,2
v3 (3, 1) e⃗3,4
v4 (0, 0) e⃗1,4

Half-Edge Origin Twin Next Prev
e⃗1,2 v1 e⃗2,1 e⃗2,3 e⃗4,1
e⃗2,3 v2 e⃗3,2 e⃗3,4 e⃗1,2
e⃗3,4 v3 e⃗4,3 e⃗4,1 e⃗2,3
e⃗4,1 v4 e⃗1,4 e⃗1,2 e⃗3,4
e⃗2,1 v2 e⃗1,2 e⃗1,4 e⃗3,2
e⃗3,2 v3 e⃗2,3 e⃗2,1 e⃗4,3
e⃗4,3 v4 e⃗3,4 e⃗3,2 e⃗1,4
e⃗1,4 v1 e⃗4,1 e⃗4,3 e⃗1,2

Figure 8: The DCEL we will be using for Fortune’s algorithm.

3.2 An overview of Fortune’s algorithm

Fortune’s algorithm for computing the Voronoi diagram of a set of points P is a sweep
line algorithm, i.e. it uses a horizontal line to scan the points in P , gradually collecting
information and building the diagram. That line, which we denote as l, scans the points
from top to bottom and as it moves downwards, the algorithm assumes that a fixed set of
points in the field above the line have already been assigned to their respective Voronoi cells.
That is the loop invariant of Fortune’s algorithm. More specifically, the points that have
already been assigned to a Voronoi cell when l reaches some position are all points that are
certainly closer to the sites above the line than to the sites below it. Every site pi along with
line l defines a unique parabola ci, with pi being the focus and l being the directrix. All
points inside that parabola are closer to pi than they are to line l. When viewed together, all
such parabolas form a unique parabolic and x-monotone borderline sequence, which we call
a “beachline”, with the property that all points above the beachline are closer to the sites
above l than they are to the sites below l. The movement and structure of that beachline is
determined by the position of the sites and the movement of line l.

Lemma 3.1 Let the points in the beachline where two different parabolic arcs intersect be
called “breakpoints”. A breakpoint belongs to an edge in the Voronoi diagram. As the
beachline moves downwards, its breakpoints trace the Voronoi diagram.

Lemma 3.2 The structure of the beachline changes as line l moves downwards and discov-
ers new points. There are two possible changes, called “events”, that can happen to the
structure of the beachline: a new parabolic arc may appear or an arc may disappear.

A) When a parabolic arc appears in the beachline, there is a site event. This happens
only when l encounters a new point. As a consequence, the beachline can have at most 2n−1

6

Figure 9: Beachline and Breakpoints

parabolic arcs. In a site event, the outline of the edges is differentiated and drawn.

B) When a parabolic arc or a part of an arc disappears from the beachline, there is a
circle event. This can only happen when the sweep line reaches the lowest point of a circle
through three sites defining consecutive arcs. During circle events we spot all the vertices of
the Voronoi diagram.

3.3 An implementation in detail

Fortune’s algorithm as described above basically traverses through all possible events in
an order from top to bottom (or left to right) and based on the information it collects, it
constructs the beachline and subsequently the Voronoi diagram.

7

The algorithm maintains three data structures as it progresses through all events:

The Voronoi diagram itself is represented by a DCEL D, which stores records of the
edges and the vertices (See 8).

The beachline is stored implicitly in a Red-Black Tree T . At all times, the points stored
in T are either the sites of P that act as foci to the parabolic arcs of the beachline or the
breakpoints between parabolic arcs. So T contains at most 2n− 1 nodes.

Figure 10: Red-Black Tree operations during
Site Event handling

The leaves of the tree represent the sites that
act as foci of the current parabolas. The in-
ternal nodes represent the breakpoints of the
beachline. The points in T are ordered from
left to right. When a site event appears, we
search T for the part of the parabola that
needs to be replaced by a new arc. This
happens in logarithmic time. When a circle
event appears, we delete a specific parabolic
arc from our beachline. That also happens
in logarithmic time. Of course, these opera-
tions will be accompanied by the necessary
modifications to the structure of the Tree
and will also induce progress in the construc-
tion of the Voronoi diagram in D. For ex-
ample, at a site event, we will add edges to
D and at a circle event we will form vertices
in D.

Figure 11: Red-Black Tree operations during
Circle Event handling

Lastly, the algorithm examines events
in an order from top to bottom and from
left to right. To achieve this, we must
maintain a priority queue Q, which will
contain all the events whose probable ap-
pearance at some point can be predicted
at a current position of the sweep line.
Of course, not all such events will ac-
tually take place. Many circle events
which we will predict from each site event
or circle event will not happen, because
there can be consecutive triples of foci
whose breakpoints do not converge. We
will refer to this phenomenon as a false
alarm.

In the pseudocode implementation of Fortune’s algorithm that follows, we shall assume
that the following generic classes have been constructed:

point the coordinates of a point p : (x, y). This class will also be used to represent

8

the vertices of the Voronoi diagram.

edge: The fields are designed to fit in a DCEL and are all public: e.start, e.end, e.next, e.prev
and some other attributes needed to make rough algebraic calculations.

line: a startard “straight line” class, defining all lines as equations of the form:
ax+ by = c, |a|+ |b| ̸= 0.

event: an event is defined by a point(ev.point), a parabolic arc(ev.parabola) and a
boolean value ev.se, which identifies if an event is a site event(se) or not).

parabola: This is the most important class in the algorithm. An object instantiating the
“parabola” class may not necessarily represent a parabolic conic curve. These
objects are used as nodes in the Red-Black Tree T , so their functions are numer-
ous. If a “parabola” object is a leaf of T , then it represents an arc. Otherwise
it stands for a breakpoint. Every “parabola” object p has the following public
fields: p.site (the focus, if it is a leaf), p.edge (the breakpoint, if it is an internal
node, p.ce (the circle event corresponding to the parabola), p.parent (p’s parent
in T) and p.isLeaf (a boolean value which is self-explanatory).

Algorithm 3.3.1 Main structural compartment of Fortune’s
O(n log2 n) Voronoi diagram computation algorithm.

1: procedure VoronoiDiagram
2: INPUT : a set of points P := {p1, p2, p3, ..., pn}
3: OUTPUT : a doubly-connected edge list D, representing the Voronoi diagram of P (8)
4: (* Initialization *)
5: Initialize an empty Red-Black Tree T, an empty DCEL D and a priority queue (heap data structure)

Q with all site events.
6: (* End of Initialization *)
7: while Q ̸= ∅ do
8: e← Q.top()
9: Q.pop()
10: if e.se == true then
11: InsertParabola(e.point)
12: else
13: DeleteParabola(e.parabola)
14: end if
15: end while
16: Compute the bounding box containing all vertices of the Voronoi diagram and attach the half infinite

edges that are left in T to it.
17: Update and output D.

18: end VoronoiDiagram

The methods to handle site and circle events are implemented as follows:

Procedure 3.3.2
InsertParabola procedure, for handling site events.

1: procedure InsertParabola
2: INPUT : a point u that is the focus of the new parabolic arc being inserted.
3: parabola par = the parabola vertically above u. We search for par in T .
4: if par.ce is in Q then

9

5: par.ce is a false alarm. Delete it from Q.
6: end if
7: Create 3 new parabola objects: a, b, c.
8: b.site← u
9: a.site← c.site← par.site
10: a.edge ← bisector of |a.site↔ b.site| and b.edge ← bisector of |b.site↔ c.site|.
11: Insert par in T (10), while performing the necessery rebalancing operations.
12: FindCircleEvent(a)

13: FindCircleEvent(c)

Procedure 3.3.3
DeleteParabola procedure, for handling circle events.

1: procedure DeleteParabola
2: INPUT : a circle event e.
3: parabola left, right = the parabolas left and right of the arc being deleted.
4: If left or right are predicted to have circle events, then it is a false alarm. Delete these events from Q.
5: s← the center of the circle through points left.site, p.site, right.site.
6: x: new edge from s through the bisector of |left.site↔ right.site|.
7: Delete p from T (11), while performing the necessary re-balancing operations.
8: FindCircleEvent(left)

9: FindCircleEvent(right)

Procedure 3.3.4
FindCircleEvent procedure

1: procedure FindCircleEvent
2: INPUT : a parabola p, whose circle event we will find and add to Q.
3: parabola left, right = the parabolas left and right of the arc we predict is going to disappear.
4: if either one of left or right doesn’t exist OR left.site == right.site then
5: RETURN //that means p is at the edge of the beachline
6: end if
7: xl, xr: bisectors of |left.site↔ p.site| and |p.site↔ right.site|.
8: s := xl ∩ xr
9: if s doesn’t exist then
10: RETURN //edges xl and xr diverge, so we have no circle event
11: end if
12: r := radius of circle with center p.site that passes through s.
13: if s.y − r strictly above sweep line l then
14: RETURN //we have already predicted this circle event.
15: end if
16: event e := a new circle event has been detected.
17: e.ce← true

18: e.parabola← p
19: e.point.y = s.y − r

20: Q.push(e)

Theorem 3.1 Fortune’s algorithm for computing the Voronoi Diagram runs in O(n log2 n)
time and uses O(n) storage.

Proof: The result is derived directly from Theorem 2.1, which implies that there are O(n)
total events to process. Processing each event takes O(log2 n) time, because of the efficient
Red-Black Balanced BSTs we use in the implementation. Therefore, the total running time
is O(n log2 n). �

10

Figure 12: Left: Two dimensional radial sampling (four profiles). Each profile contains 9
samples. Right: Corresponding Voronoi diagram of the radial sampling points.

4 Voronoi in MRI

In this section, we present an application of Voronoi diagrams to the MRI reconstruction
problem. More specifically, we portray a way to use Voronoi diagrams in 2 or 3 dimensions
as a tool to estimate the parameters required by non-uniform FFT (NUFFT) algorithms for
the solution of the MRI reconstruction problem.

In MRI, high quality images of a selected body part, like the heart, the brain or the
liver are produced via the exploitation of the nuclear magnetic resonance phenomenon.
Strong magnetic fields (1.5 T - 11 T) are used to excite hydrogen nuclei (protons) present
in almost every cavity of the human body. When the magnetic fields return to normal, the
excited protons emit radio waves which are captured by special receiving coils and turned
into signals. The acquired signals are represented in the frequency domain (Fourier), which
is referred to as k-space, in the form of points in the plane or in space. In what is called
“radial sampling”, the collected points reside along radial profiles covering a circle (see Fig.
12(Left)) or a sphere.

In order to construct the final MRI image from 2-D or 3-D k-space data, we employ
specific image reconstruction algorithms, that convert the acquired samples to 2D or 3D
images, respectively [3]. A crucial step in this process is the sampling density compensation
[5]: each sample point is assigned a specific value (weight) which depends on the area
(or volume in 3D) of the voronoi cell of the point (see Fig. 12(Right)). Since the points
are non-uniformly sampled, the derivation of closed form mathematical formulas for the
computation of the weight of samples is not always possible. This is why we have to use the
Voronoi diagram, either in 2D or 3D.

function [w]=density weights2(X,N,M)
numPoints = size(X,1);
[V,C]=voronoin(X);
vcellVolumes = zeros(numPoints,1);
for vcell = 1 : numPoints

if all(C{vcell} ˜= 1)
vpoly = V(C{vcell},:);
[˜,vcellVolumes(vcell)] = convhulln(vpoly);

end
end
w=reshape (vcellVolumes, N,M);
w=w./max(w(:));

11

end

5 Conclusions

To conclude this report, we have to acknowledge the immense research endeavors and scien-
tific breakthroughs that Voronoi Diagrams have inspired in the latest years. Nevertheless, the
progress we mentioned earlier is even more pronounced in the field of Magnetic Resonance,
where efforts to understand the human body and pinpoint traits of its functionality endlessly
fuel research projects. And with MRI images becoming clearer, better and more versatile,
we can preform diagnoses of various diseases with much more accuracy. Of course, this is all
in an experimental level as of today, but we hope that technology advances quickly, so that
the people in the future can enjoy a more advanced healthcare and live more comfortably.
All in all, Voronoi Diagrams have many more properties to explore and their applications
seem to be more than we can currently imagine.

6 Acknowledgements

The author would like to thank Dr. K. Haris for the discussions about the application of
Voronoi diagrams to MRI reconstruction, the technical writing assistance and the guidance
about the usage of LATEX and MATLAB.

References

[1] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA,
USA, 3rd ed. edition, 2008.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. The MIT Press, 3rd edition, 2009.

[3] Jeffrey A Fessler and Bradley P Sutton. Nonuniform fast fourier transforms using min-
max interpolation. IEEE Transactions on Signal Processing, 51(2):560–574, 2003.

[4] S Fortune. A sweepline algorithm for voronoi diagrams, in proceedings of the second
annual symposium on computational geometry, pp. 313-322, 1986.

[5] Volker Rasche, Roland Proksa, R Sinkus, Peter Bornert, and Holger Eggers. Resampling
of data between arbitrary grids using convolution interpolation. IEEE transactions on
medical imaging, 18(5):385–392, 1999.

[6] Michael Ian Shamos and Dan Hoey. Closest-point problems. In Foundations of Computer
Science, 1975., 16th Annual Symposium on, pages 151–162. IEEE, 1975.

12

Figure 13: Synthetic image reconstruction preliminary results using the Voronoi diagram for
sampling density compensation. (Top:) The trace on the sphere of the 3D radial profile end
points. (Middle and Bottom:) A middle slice of the original 3D image (a cube and a sphere)
[left] and the corresponding reconstructed versions [right].

13

